Program leader: prof. Dragan Mihailović,

Duration:  01.10.2024 – 30.09.2029, ERC (HIMMS)

Non-equilibrium states of matter have become of great fundamental and practical interest in recent years because of their wide importance in diverse areas of physics. With the rapid development of new time- resolved techniques, the temporal dynamics of competing processes and interactions were recently elucidated in a wide variety of complex condensed matter systems. However, the physics of metastable mesoscopically non-periodic quantum textures emerging from phase transitions has been largely experimentally inaccessible till now: current state of the art time-resolved methods using x-rays, electron diffraction, photoemission, THz and optical spectroscopy all average over multiple transition outcomes.

Moreover, they cannot resolve irregular nonperiodic nanoscale structures. Thus, a large field of mesoscopic quantum physics of metastable states remains largely unexplored. HIMMS sets out to design a unique set of tools to investigate mesoscopic metastable irregular textures created under controlled non-equilibrium conditions in quantum materials, with focus on topological transitions and quantum jamming phenomena.

Temporally tempered excitation techniques combined with time-resolved scanning tunnelling microscopy will be used to studying single and multiple transition outcomes with atomic spatial resolution on timescales from picoseconds to hours. Experiments supplemented by new theoretical approaches will address the creation processes, relaxation dynamics and quantum decoherence of metastable mesoscopic structures, as well as manipulation and control of the relevant false vacuum state barrier. Theoretical approaches for addressing resulting quantum state dynamics include fracton-derived models and quantum annealing on a quantum computer. The project opens the path to detailed exploration of a new class of physical phenomena of wide fundamental interest in different areas of physics, while opening new avenues in non-equilibrium solid state quantum systems technology.

HIMMS presentation