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Parts 1-2, Outline

Definition of nanotechnology
Size effects

Nanometrology
v" Characterization of single objects (TEM, SEM, probe techniques; image distortions)
v Compositional analysis (EDX, vibration spectroscopy, X-ray scattering)

Fabrication of 0D objects
v Semiconductor quantum dots
v Colloidal metals

v" Characterization of sols (UV-vis spectra, dynamic light scattering)

Fabrication of 1D objects

v" Carbon nanotubes (free-standing, SW, MW)

v" Ordered templates for fabrication of nanowires (track membranes, AAO)

v Templated fabrication of nanowires (filling under pressure, electrodeposition)
v" TIsolation of single nanowires and nanotubes



Richard P. Feynman, Miniaturizing the computer

“There’s Plenty of Room I don’t know how to do this on a small scfﬂe in a
at the Bottom” (Dec 1959) practical way, but I do know that computing ma-
chines are very large; they fill rooms. Why can’t we
make them very small, make them of little wires, little
elements — and by little, I mean liftle. For instance,
the wires should be 10 or 100 atoms in diameter, and
the circuits should be a few thousand angstroms
across. Everybody who has analyzed the logical theory
of computers has come to the conclusion that the pos-
sibilities of computers are very interesting —if they
‘L'ULI.lL]. ]Jl‘} lll'd.dt: o hl‘.‘: L e UUILIPHU&LU\] ‘J}f SU\FU'I.'-HI
orders of magnitude. If they had millions of times as
many elements, they could make judgments. They
would have time to calculate what is the best way
to make the calculation that they are about to make.
They could select the method of analysis which, from
their experience, is better than the one that we would
give to them. And, in many other ways, they would
have new qualitative features.

Engineering and Science 23 (1960) 22-36. Reprinted: 10.1109/84.128057



https://doi.org/10.1109/84.128057

Definition of Nanotechnology 1999

Nanotechnology 1s the popular term for the construction and utilization of functional
structures with at least one characteristic dimension measured i nanometers. Such Not simply miniaturization,
materials and systems can be rationally designed to exhibit novel and significantly but a search for valuable
improved physical, chemical, and biological properties, phenomena, and processes size-dependent properties
because of their size. When charactenistic structural features are immtermediate 1in extent and effects.

between isolated atoms and bulk materials, in the range of about 107 to 107 m
(1 to 100 nm), the objects often display physical attributes substantially different from
those displayed by either atoms or bulk materials.

Chapter 6

APPLICATIONS: NANODEVICES, NANOELECTRONICS, AND NANOSENSORS

Giant Magnetoresistance Read Head (IBM, already commercialized)

Operating principles were already justified for
Molecular electronics all these groups of devices at the turn of the XX
Field-Effect Transistor based on Carbon Nanotube century, and can be found in scientific
Single Electron Logic Elements and Memory publications.
Spin Devices
Metal-Oxide Semiconductor (MOS) Integrated Circuits Implementation was mostly successful for thin
Resonant Tunneling Devices films (2D nanoobijects), and technological issues
Quantum Computing seemed to be the most important.

Optical and Chemical Sensors



Timescale

Mie theory
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Brief Classification, fragments and structures g Ordered assemblies of identical fragments on supports
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Materials typically applied for technology

Functional materials: metals, alloys, oxides, binary II-VI and Ill-V semiconductors, conducting polymers
Supports: silicon, insulating oxides <crystallographic orientation of the surface is important>, flexible polymers

Supplementary materials: insulating polymers (resists, track membrane templates); porous oxides

Principal technological schemes For structures:

For fragments: Subsequent fabrication of fragments (sometimes
requires protection of the fragments formed earlier)
Bottom-up (deposition, sputtering, etc;

assumes nucleation and growth of particles) or
or immobilization of separately prepared fragments
Top-down (milling, thinning of the fibers, or

cutting, etc)
combined multi-step technologies



Nanoelectronics
spintronics
cryoelectronics (superconductor junctions and digital logics)
single electron devices (SETs)

eléments of organic electronics Tentative list of devices, which step-by-step
uantum computing . .
superconductor qubits technology we can discuss at the end of this
spin-based qubits course (Nov 24, 2023).

electromagnetic traps for atoms and ions

single electron qubits P d .
Nanoelectronic emitters and detectors €ase, send me your SuggeStlons

semiconductor light diodes galina.tsirlina@nanocenter.si

single photon detectors (semiconductor, superconductor) on or before Nov 9.
emitters of electrons based on nm-size materials

SQUID detectors
SET-electrometers We shall vote for device the most interesting
Photonics and non-linear optics for the audience on Nov 10.

photonic crystals (filters)
quantum micro resonators
nanoplasmonics You can suggest something else as well,

photonic integrated circuits in frames of nanotechnology definition.
single-photon sources



Size effects

. Crystal shape

. Conductivity

i WN B

Au
Quantization is noticeable starting from
~ 2 nm size (metals)
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Size dependent properties of materials. 1. Crystal shape

lcosahedron (for body-centered cubic lattice, bcc)
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Nano Today 4 (2009) 143



Size dependent properties of materials. 2. Interatomic distance/lattice parameter
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Size dependent properties of materials. 3. ‘Additional’ free energy (interfacial contribution)

Energy spent for formation of

a single spherical particle of radius r

1337 K (for bulk Au)
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Phys. Rev A 13 (1976) 2287
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Size dependent properties of materials. 4. Conductivity, example for Bi wires (glass insulated)
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Size (and shape) dependent properties of materials. 5. Optic absorbance, example for Au particles
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Nanometrology

Electron microscopy: Scanning (SEM) and Transmission (TEM) <vacuum exclusively>
Low-energy electron diffraction (LEED) <vacuum exclusively>
Probe microscopy: Scanning Tunneling (STM), Atomic Force (AFM), ... <any medium>

X-ray energy-dispersive spectral analysis

Standards Aboutus News Takingpart [ Store’ Q W EN -

1SO/AWI TR 18196

Nanotechnologies — Measurement technique matrix for
the characterization of nano-objects =




Photo from the Nobel Photo from the Nobel Photo from the Nobel

Foundation archive. Foundation archive. Foundation archive.
Ernst Ruska Gerd Binnig Heinrich Rohrer
Prize share: 1/2 Prize share: 1/4 Prize share: 1/4

The Nobel Prize in Physics 1986 was divided, one half awarded to Ernst
Ruska "for his fundamental work in electron optics, and for the design of
the first electron microscope”, the other half jointly to Gerd Binnig and
Heinrich Rohrer "for their design of the scanning tunneling microscope."



Energy-dispersive X-ray spectroscopy (EDX, or EDS): elemental analysis in
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Electron microscopy, SEM: mapping of the elements with um resolution

Count

EDX spectra

Count



Electron microscopy, TEM: atomic resolution and mapping of the elements
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Scanning Constant current / Constant distance d

tunneling L

microscopy controller

(STM) feedback Tip trajectory
regulator

Current vs distance dependence (at low V,,,. and temperature)

Mean electron work function Only for conductive

‘ samples!
. . —i‘fﬂm(U—E}d« distance
Probability of electron tunneling »D(E) X € i

m , £— electron mass and energy

. »

Fermi-Dirac functions for tip and sample materials
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Atomic Force Microscopy (AFM):
works for non-conductive samples as well

photodiode Laser
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Surface Sci. Rep. 77 (2022) 100549
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Tip shape can be estimated

from the images of standard samples

(e.g., polystyrene spheres)
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Tip shape can be defined by ‘natural’ crystallography of certain materials
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General problem of microscopy:

Local, less representative for the sample
as a whole

Problem of electron microscopy:

Vacuum is required, samples fabricated in
gas or liquid medium can undergo some changes

Problem of probe microscopy:

Images can be affected by the shape of tip

Possible solution of all these problems:

To combine both techniques, and to involve
more macroscopic structural techniques in
parallel
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Nanometrology: books and reviews

R. Garcia, R. Perez, Dynamic atomic force microscopy methods, Surface Sci. Rep. 47 (2002) 197-301.

H.-J. Gao, L Gao, Scanning tunneling microscopy of functional nanostructures on solid surfaces: Manipulation, self-
assembly, and applications, Progr. Surface Sci. 85 (2010) 28-91.

Introductory guide to nanometrology (editors P.-E. Hansen and G. Roebben), 2010.

R. K. Leach, R. Boyd, T. Burke et al., The European nanometrology landscape, Nanotechnology 22 (2011) 062001.
R. Herrera-Basurto, B.M. Simonet, In ‘Encyclopedia of Analytical Chemistry’, Wiley, 2013.

Acoustic Scanning Probe Microscopy (editors F. Marinello, D. Passeri, E. Savio), Springer, 2013.

A.F. Thiinemann, F. Emmerling, and V.-D. Hodoroaba, Review of existing calibration or reference materials <Technical
Report on the EU FP7 NanoDefine Project>, 2014.

D. Hussain, K. Ahmad, J. Song, H. Xie, Advances in the atomic force microscopy for critical dimension metrology, Meas. Sci.
Technol. 28 (2017) 012001.

Nanocharacterization techniques (editors A. L. Da Roz, M. Ferreira, F. de Lima Leite, O. N. Oliveira, Jr.), Elsevier, 2017.

N.G. Orji, M. Badaroglu, B.M. Barnes et al., Metrology for the next generation of semiconductor devices, Nature Electronics
1 (2018) 532-547.

P. Klapetek, Quantitative Data Processing in Scanning Probe Microscopy: SPM Applications for Nanometrology, 2018 (2nd
Edition).

B.R. Masters, Superresolution Optical Microscopy, Springer Series of Optical Science, No 227, 2020.

R. Xu, J. Guo, S. Mi et al., Advanced atomic force microscopies and their applications in two-dimensional materials: a review,
Mater. Futures 1 (2022) 032302.



0D materials, dedicated to recent (2023) Nobel Prize

Stabilization of small particles in solid matrix and in solutions
Narrow size distribution (ideally particles should be of identical size)

Core-shell particles: additional tool to modify electronic/optical properties

2 KUNGL. https://www.nobelprize.org/prizes/chemistry/2023/
5l VETENSKAPS-
AKADEMIEN THE NOBEL PRIZE IN CHEMISTRY 2023

THE ROYAL SWEDISH ACADEMY OF SCIENCES
POPULAR SCIENCE BACKGROUND

T

| c—

They added colour to nanotechnology |

Moungi G. Bawendi, Louis E. Brus and Alexei I. EkKimov are awarded the Nobel Prize in Chemistry

- ! ¢ \
2023 for the discovery and development of quantum dots. These tiny particles have unique properties % e, - : Q

and now spread their light from television screens and LED lamps. They catalyse chemical reactions
and their clear light can illuminate tumour tissue for a surgeon.
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solid solution of CuCl, or CdS, or.... Monodispersed, can be separated from
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Chemical synthesis of sols (solid particles dispersed in liquid, colloid)

Chemical redox _
Reagent reaction Growth Coagulation  g;spension
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Typical stabilizers
CH,

HaC-N-CH;

HBC/\/\/\/\/\/\/\) Br /\/\/\/\/\/\O_('S'),_O- Na*
| K s

Cetyltrimethylammonium bromide (CTAB) Sodium dodecy! sulfate (SDS)
i CH Polyethylene glycol Polyvinylpyrrolidone +
Br /5,,5:3 3
+ (PEG) l (PVP) N YO
CHs(CHE 115 "N EE— CHS :
N O M H
CH, H ,OH H )
Alkane thiol

Citrate sols: the anion of citric acid operates as reducing reagent + as stabilizer

CcO
CO, Au pariicles : HCOH
HAUCI, + HO—+CO, —Pp Co;

+

+
NCO, cl o{ o:L
Citrate co, cO

2



Electrostatic stabilization, DLVO theory

lonic
atmosphere

Diffuse layer
of ions

Radius of ionic atmosphere,
depending on ions charges z
=) and ions concentrations n

Repulsion between i nj particles

B. Derjaguin, L. Landau,
Acta Physicochim. URSS 14 (1941) 633-662

E.J.W. Verwey, J.Th.G. Overbeek, Theory of
the Stability of Lyophobic Colloids: The
Interaction of Sol Particles Having an
Electric Double Layer. Elsevier, 1948

T

“Electric double layer” is conditional
name, it is more complex than “double”:
a layer of chemisorbed species +

diffuse layer of ions.

iy -
raall
T {J'} : zizjfz E‘:Kp[k{ﬁj + ﬂj}] E:l.;p{ . h.}.}
1 B 4HEED {1 + .Ill.-l”j}{l + j"-'ﬂj} I < distance

Chem. Soc. Rev. 41 (2012) 7479



How to deal with colloid particle (to say, with QD) in a vacuum? Ql

Pure Carbon Film: Carbon films with a thickness of 15-25nm with no Formvar used during manufacturing. Completely free
of Formvar. Carbon films are thin and highly transparent to electrons. They exhibit very fine grain and minimal interference
with specimen structure.

ULTRATHIN CARBON FILM SUPPORTED BY A LACEY CARBON FILM: The continuous ultrathin carbon film on lacey film
allows for the thinnest carbon support film that still has adequate strength to withstand specimen preparation. The film
(less than 3nm thick) lies across a carbon lacey film supported by a 400 mesh copper grid. The size of the holes in the lacey
film differ widely from batch to batch but are generally in the range of %4 um to 5um.

Lacey Carbon

W STED PELLA, INC. N Substrates, Support Films

A 1viicroscopy Products for Science and Industry for Transmission Electron Microscopy Grids



Absorption spectra

M. Faraday, Experimental relations of gold (and others metals) to light,
Philos. Trans. Roy. Soc. London. 1857. V. 147. P. 145-181

Tyndall effect, 1868: (size << 1)
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(1902)
£
Theory of light scattering by )
particles of size comparable with i N s
A: 500 I
G. Mie, Ann. Phys. 25 (1908) 377 °0 20 40 60 80 100
Diameter of Nanoparticles (nm)

J. Phys. Chem. C 111 (2007) 14664



VOLUME 21 NO 4 APRIL 1949

THE COLOR OF COLLOIDAL GOLD
J. Colloid Sci. 9, Suppl.1 (1954) 26
J. Turkevich, G. Garton, and P. C. Stevenson
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Electron Microscopy of Colloidal Systems

JOHN TURKEVICH, Princeton University, AND JAMES HILLIER, RCA Laboratories, Princeton, N. [J.




Effect of shape: silver particles; triangle silver and
its evolution

11

XRD pattern
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Core-shell: possibility to tune the properties

0.....1 are molar fractions of Au
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For fun
Dynamics of shape evolution, TEM, Janus particles (typically sub um), SEM

palladium “swimmers’ n‘v ‘

See movie (Supplementary File avi)
DOI 10.1039/C7CC07649E
J.Mater.Chem.

polymer
20(2010)6587

Eur. Phys. J. E 44 (2021) 90
800 nm

@ IZM@MLU>2010_04_21-10 F 800 nm

Langmuir
33(2017)
13766 SiO,/Pt

SRS Lecture about Janus particles:
Chem. Commun. 53 (2017) 13213 https://www.youtube.com/watch?v=vxW7_-ei8Bw



’

nanowires

‘Nanorods’ and

Gold, aspect ratios 3-7 (short) and >20 (long)

Indium, aspect ratios can exceed 50

‘[112']

(111) twin

plane
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Surface Science 440 (1999) L809

J. Amer. Chem. Soc. 130 (2008) 8140



0D material: books and reviews Colloid systems are discussed in the course of Prof. P. Ziherl ‘Fizika mehke snovi’,

« C.B. Murray, C.R. Kagan, M.G. Bawendi, Synthesis and Characterization of Monodisperse Nanocrystals and Close-
Packed Nanocrystal Assemblies, Annu. Rev. Mater. Sci. 30 (2000) 545—-610.

e C.Burda, X. Chen, R. Narayanan, M. A. El-Sayed, Chemistry and Properties of Nanocrystals of Different Shapes, Chem.
Rev. 105 (2005) 1025-1102.

* K. Watanabe, D. Menzel, N. Nilius, H.-J. Freund, Photochemistry on Metal Nanoparticles, Chem. Rev. 106 (2006) 4301-
4320.

* P.C. Ray, Size and Shape Dependent Second Order Nonlinear Optical Properties of Nanomaterials and Their Application
in Biological and Chemical Sensing, Chem. Rev. 110 (2010) 5332-5365.

* R.Sardar, A. M. Funston, P. Mulvaney, R. W. Murray, Gold Nanoparticles: Past, Present, and Future, Langmuir 25 (2009)
13840-13851.

e Electrical Phenomena at Interfaces and Biointerfaces: Fundamentals and Applications in Nano-, Bio-, and Environmental
Sciences (editor H. Ohshima), Wiley, 2012.

 N.E. Montl, A.F. Smith, C.J. Desantis, S.E. Skrabalak, Engineering plasmonic metal colloids through composition and
structural design, Chem. Soc. Rev. 43 (2014) 3823-3834.

» Soft, Hard, and Hybrid Janus Structures: Synthesis, Self-Assembly, and Applications (editors Z.Lin, B. Li), World Scientific,
2017.

e K. M. Koczkur, S. E. Skrabalak, Metal Nanocrystals, ACS, 2020.
* A.Holmes, E. Deniau, C. Lartigau-Dagron, A. Bousquet, S. Chambon, N.P. Holmes, Review of Waterborne Organic
Semiconductor Colloids for Photovoltaics, ACS Nano 15 (2021) 3927-3959.

* A.Rao, S. Roy, V. Jain, P.P. Pillai, Nanoparticle Self-Assembly: From Design Principles to Complex Matter to Functional
Materials, ACS Appl. Mater. Interfaces 15 (2023) 25248-25274.



1D materials

Templates for fabrication of nanowires
Filling of templates

Chemical vapor deposition (CVD) of carbon nanotubes (CNT)



Early attempts of electrochemical formation
of nanowires: «Step decoration»

Deposition of metal or oxide results from ions reduction
or oxidation in electrochemical cell.

The gquantity of deposited material can be monitored by
measuring deposition charge (Faraday law of electrolysis).

Highly oriented pyrolytic graphite (HOPG)
provides steps as templates

L

nucleationl
MV M
v

s

W
growthv
/G 41




Another type of template: ‘Self-ordering’ in the course of aluminug10 ?/nodization

1 AR
2 \

3 N ';
D AN B

20 s

'.'.00000000'
.'000000.0.'
’ TYITYI T L
AAT

60 V 70V
Aqueous ethanol + HCIO, Phys. Rev. B 56 (1997) 12608



-~ s Hexagonal ordering results in formation of the parallel pores

alumina

aluminium
‘/
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: | x | ; free alumina
| | | | | & film
| | | | |
] | | I I
I | | | |
I ' | I | __ barrier
L layer
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\ gelatin gel

‘
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N\
60-150 nm

membrane

] [ atemin Up to 100-150 um
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Anodic Aluminum Oxide (AAO) as metamaterial, photonic crystals
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The closest analogy of AAO: TiO, nanotubes

[TiF.J"
F 3
NHY | F

a}\ by pH ¢ R,

H-I-
H
H* iy
Hi-
pH
Ti + 2H.0 =TiQ. + 4H" (1) cl
— + -
; g g, 4 External surface
L—&| TiO, + 6HF — [TiF,J "+ 2H,0 + 2H" (2) I

Angew. Chem. Int. Ed. 44 (2005) 7463



Templates:

Templated deposition into pores

- solid, inorganic (like AAO) ?.

- polymer (track membranes)
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Wires growth in AAO templates

Wires diameters: 15 — 150 nm

Wires length: up to 100 -200 um

a7



Wires in devices

GaAsSb

Photocurrent (a.u.)

Wavelength (nm)

Photoluminescence

) Au/Ag/Au wire

(thin Ag later is
dissolved to provide
molecular-size gap)

Contacts for a single
molecule

Anal. Chem. 78 (2006) 951



Single wires with contacts

] EHT= 10.00 kV Signal A = InLens

Mag = 10.00 K X 1um
— WD = 6mm Photo No. = 4760

Deposition from
suspension

Mag= 1500KX MM EHT = 10.00 kV
WD= &émm




Josephson junction with Au wire as a weak link

ACS Appl. Nano Mater.
5 (2022) 17059

Resistance, Q)
G 2, (O, T B D

o

Temperature, K
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Templating of nanotubes is also

possible
J. Crystal Growth 310 (2008) 612

CdS in track membranes



Chemical vapor deposition (CVD) of carbon nanotubes (CNT)

Catalytic CVD:
two-step CVD

Pyrolysis (thermal decomposition of a single reagent) CH,; 2> C+H,

Disproportion (two products from one reagent) coO->C+Co,
Reactor
precursors: gas or aerosol o®
> homogeneous Carrier gas
Carrier gas >
- heterogeneous > |
S Evaporation By-products (volatile!)
Precursor chamber support (wafer)
solutions

Fe catalyst near the bottom

Liquid catalyst “~
of carbon nanotube

Carbon Feed /533 Carbon Feed

OR continuous-feed CVD B ) R ) g
Ferrocene, precursor olid catal B
Ee  for both iron and olid catalyst @3

ic:__h):, carbon
Carbon Feed A0 Carbon Feed
- s : 2 \ - ‘ h | )

/ Sub ‘
Carbon 47 (2009) 384-395 Top. Curr. Chem. (Z) 375 (2017) No 29 Detre




Carbon nanotubes doped with foreign elements (example for nitrogen)

200 nm :
X=CN, or can contain another
J. Solid State Chem. 235 (2016) 202 doping element
10 - o 3 . “pyrrolic” N atom . C atom
ol N_CNT 05 10 a a & N ONT 05 2 ‘ “graphitic” N atom
_ 1 ‘ “pyridinic” N atom
IE, N CNT 4 N _.CNT_2 B 81
1
7 6 ¢ .N_CNT_1-5 g 6 _ﬁ_g:';f B ¢a ¢ @ N CNT 1.5
G ®N CNT 6 T _
- c O A © N_CNT_6
o 4+ LAl
®\ CNT 12 © A D @ N CNT 12
2F 7
AJ]e20D03
0 0.5 1.0 1.5 2.0 2.5 0 0.1 0.2 0.3 0.4 0.5 0.6
Content N, at % Content of N in different states, at %

Russ. J. Phys. Chem. A 93 (2019) 1952




Problems with single nanotubes: bundles and residual catalyst

20 nm

Carbon 38 (2000) 2017

Can be separated by ultrasound ——
treatment in presence of Carbon 100 (2016) 501
adsorbing substances.

Can be purified by acidic chemical treatment (e.g., HCl). However
incapsulated catalyst remains undissolved.

J. Nanomater. (2014) 586241



Forests of nanotubes: ordered compact materlals
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Appl. Phys. Lett. 92 (2008) 213113

CNT-based flexible materials
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Macromol. Rapid Commun. 44 (2023) 2200795



Metal filled carbon nanotubes: gallium thermometer

@ Increase temperature

v Decrease temperature

--- Average

e

v

»

\ L -
> Tubes:

i

o7 Diam 75 nm

Height 7.5 um

100 200 300

400

Temperature (°C)

500

Expansion of gallium inside a carbon nanotube with increasing temperature. a—¢, Changing level of the gallium meniscus at
58 °C (a), 490 °C (b) and 45 °C (c); scale bar, 75 nm. d, Height of the gallium meniscus plotted against temperature, measured in steps
of 30-50 °C; results are averaged (green curve) from closely similar measurements obtained during heating (red) and cooling (blue).

Nature 415 (2002) 599

There are many important findings for bulk composite materials
containing CNT (especially related to thermal conductivity).

There are many other nanowires already actively applied in

various devices (especially Si, Ge, Ag).

Assemblies of nanowires will be also discussed in subsequent
parts of this course, as related to 2D in combination with

lithography.

TEM micrographs showing Ga volume contraction
and expansion inside a carbon nanotube upon cooling and
heating. The background feature is a carbon film. Scale bar =
100 nm. (a) At room temperature, 21 °C, before cooling. (b) At
—40 °C. (c) At —80 °C., solidification occurred. (d) The crys-
tallized Ga was melted at —20°C. (e) Reheated to room
temperature, 21 °C.

a-Ga B-Ga v-Ga
Symmetry orthorhombic monoclinic orthorhombic
Melting po-int 29.8°C —16.3°C —35.6°C




1D material: books and reviews

P. M. Ajayan, Nanotubes from Carbon, Chem. Rev. 99 (1999) 1787-1799.

J. Wang, Y. Chen, W. J. Blau, Carbon nanotubes and nanotube composites for nonlinear optical devices, J. Mater.
Chem. 19 (2009) 7425-7443.

M. Hernandez-Velez, Nanowires and 1D arrays fabrication: An overview, Thin Solid Films 495 (2006) 51 — 63.

C. Anastasescu, S. Mihaiu, S. Preda, M. Zaharescu, 1D Oxide Nanostructures Obtained by Sol-Gel and Hydrothermal
Methods, Springer, 2016.

A.D. Davydov, V.M. Volgin, Template Electrodeposition of Metals. Review, Russ. J. Electrochem. 52 (2016), 806—831.

M. Li, X. Liu, X. Zhai, F. Yang, X. Wang, Y. Li, Metallic Catalysts for Structure-Controlled Growth of Single-Walled
Carbon Nanotubes, Top. Curr. Chem. (Z) 375 (2017) No 29.

A. Shah, G. Saha, M. Mahato, Parameters involved in CVD growth of CNT: A review, Springer Proc. Mater. 15 (2022)
185-198.

R. Hu, L. Yu, Review on 3D growth engineering and integration of nanowires for advanced nanoelectronics and sensor
applications, Nanotechnology 33 (2022) 222002.

H. Li, Z. He, C. Xi et al., Review on IlI-V Semiconductor Nanowire Array Infrared Photodetectors, Adv. Mater. Technol.
8 (2023) 2202126
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