Fabrication of nanostructures and nanoscale devices. Part 4.

Galina A. Tsirlina

galina.tsirlina@nanocenter.si galina.tsirlina@protonmail.com

See the lectures at https://www.nanocenter.si/qt-future/education-2/

QT Future, Fall 2023

How to distinguish a single layer regions in 2D flakes?

CVD graphene grown on Ni and Cu, Raman

AIMS Mater. Sci. 4 (2016) 194

Mater. Horiz. 6 (2019) 97

Parts 3-4, Outline

Fabrication of Thin Films (2D fragments of nanostructures)

Part 3

•Atomically flat supports (etching, polishing, termination)

- Exfoliation of 'van der Waals' thin films
- Chemical vapor deposition (CVD) (graphene; what else can be deposited)
- Epitaxial films (molecular beam epitaxy (MBE), atomic layer deposition (ALD))

Part 4

• Physical vapor deposition (thermal, laser, magnetron; growth control and monitoring)

- Wet deposition (electroless)
- Wet deposition (electrochemical)

Thermal sputtering (evaporation)

«boat» is fabricated from W, Ta, or Mo (very high melting temperatures)

Equilibrium vapor pressure, examples for gold and titanium; typical values for evaporation are ~10⁻⁵–10⁻¹ Torr (~10⁻⁸– 10⁻⁴ bar)

evaporation rate:

 $\frac{dP_{sat}}{dT} = \frac{Q}{T\Delta V} \quad \Longrightarrow \quad \frac{dP_{sat}}{dT} = \frac{PQ}{T^2R} \quad \Longrightarrow \quad \ln P_{sat} = -\frac{Q}{TR} + A = A - \frac{B}{T}$

If PV~RT; Q – evaporation enthalpy

Thermal sputtering, distribution along the support surface

Quartz crystal microbalance: monitoring of deposition rate

Thermal sputtering, Bi on mica (111)

Compare with the data for Bi wires, Pts 1-2, p.13:

qualitative changes started from 45 nm wire diameter.

Thin Solid Films 516 (2008) 3411–3415

E-beam deposition

Plasma Sources Sci. Technol. 31 (2022) No 083001

Molecular beam epitaxy (MBE)

Vacuum < 10⁻¹² bar

Diaphragms are applied to decrease the solid angle

(AIO2)-

(LaO)+

(AIO2)-

(LaO)+

(TiO2)0

(SrO)⁰

(TiO2)0

(SrO)⁰

(LaO)+

(AIO2)-

(LaO)+

Magnetron (plasma) sputtering

 $10^{-6} - 10^{-3}$ bar Ar

Ion beam assisted deposition

Plasma Sources Sci. Technol. 31 (2022) No 083001

Comparison of various physical vapor deposition techniques

Wet deposition techniques: electroless (chemical) deposition (plating)

Electroless deposition, reactions

on concentrations and on reaction free energy (difference of equilibrium potentials for half-reactions)

J. Electrochem. Soc. 142 (1995) 2250 Ascorbic acid

Hydrazine N₂H₄ Hydroxylamine NH₂OH Hypophosphite (PO₂)³⁻

Electroless deposition: sensibilization of glass, polymers, and other hydrophobic surfaces

Typical sensibilization agents are tin, palladium and gold.

Cu resonators on paper

ACS Appl. Mater. Interfaces 1 (2009) 4

Langmuir 12 (1996) 1375

Wet deposition techniques: electrochemical (galvanic) deposition

Electrolytes (bath) are designed for many metals to suppress hydrogen evolution

Metal	Type of the electrolyte	Average cathodic efficiency
Ag	Cyanide	0.98
Au	Citrate	0.60
Au	Phosphate	0.95
Cd	Cyanide	0.90
Cd	Sulfammonia	0.90
Со	Sulfate	0.88
Cr	Chromate	0.18
Cu	Sulfate	1.00
Cu	Cyanide	0.75
Cu	Pyrohosphate	0.99
Fe	Chloride	0.90
Fe	Sulfate	0.92
Fe	Fluoroboric	0.95
Ni	Sulfate	0.96
Ni	Sulfamate	0.98
Pb	Fluoroboric	0.99
Pd	Amino-chloride	0.80
Re	Sulfammonia	0.25
Rh	Sulfate	0.70
Sb	Citrate	0.94
Sn	Stannate	0.80
Sn	Pyrophosphate	0.90
Sn	Sulfate	0.95
Zn	Cyanide	0.80
Zn	Sulfate	0.97

Electrochemical deposition of alloys

Composition of the plating solution.

Compound/condition	Value
NH4Cl	0.3 M
H3BO3	0.4 M
Saccharin as Na-salt	0.004 M
CoSO4·7H2O	0.05 M
FeSO4·7H2O	0.0072-0.065 M
pH	2.3 ± 0.02
Temperature	23 ± 0.5 °C

Ni²⁺/Ni

0

 H^+/H_2

More 'noble' metal is depositing faster, but reaches the limiting diffusion current at less negative potential

Co²⁺/Co

Fe²⁺/Fe

60

1.2

1.1

-E vs. SCE /V

0.8

0.9

30

0.7

Electrochimica Acta 58 (2011) 25

Cu²⁺/Cu

Potential, V

(SHE)

Electrochemical deposition of bimetallic superlattices: dual bath

4153/14 SE

Electrochemical deposition of bimetallic superlattices: single bath

DAMASCENE process of copper deposition,

three additives:

- 'catalyst'

- suppressor

- 'leveler' (adsorbing species, also named 'brighteners')

If diffusion of suppressor into narrow regions is slow, metal is in time to grow inside.

Multiple layers of electrodeposited copper wires (the non-copper materials have been etched away) that provide the on-chip 3-D network for interconnecting the transistors.

Copper interconnect technology was introduced by IBM in 1998, and is now widely used throughout the industry. Photo

IBM Res. Devel. 49 (2005) No 1

Electroless vs. electrochemical deposition (plating)

Any support

Only conducting supports

Simple configuration Cell and contacts are necessary

Both are controlled by concentrations and temperature

Additional control by potential/current

Monitoring based on Faraday Law

Wet deposition vs. physical vapor deposition

Much lower temperatures

No contact with corrosive media

No damage by high-energy species

All real technologies combine wet and dry technological steps

Nanoelectronics

- spintronics
- cryoelectronics (superconductor junctions and digital logics)
- single electron devices (SETs)
- elements of organic electronics

Quantum computing

- superconductor qubits
- spin-based qubits
- electromagnetic traps for atoms and ions
- single electron qubits

Nanoelectronic emitters and detectors

- semiconductor light diodes
- single photon detectors (*semiconductor*, *superconductor*)
- emitters of electrons based on nm-size materials
- SQUID detectors
- SET-electrometers

Photonics and non-linear optics

- photonic crystals (*filters*)
- quantum micro resonators
- nanoplasmonics
- photonic integrated circuits
- single-photon sources

REMINDER

Tentative list of devices, which step-by-step technology we can discuss at the end of this course (Nov 24, 2023).

Please, send me your suggestions galina.tsirlina@nanocenter.si on or before Nov 9.

We shall vote for device the most interesting for the audience on Nov 10.

You can suggest something else as well, in frames of nanotechnology definition.

2D material: books and reviews on sputtering and chemical/electrochemical deposition

- M. Paunovic, M. Schlesinger, Fundamentals of Electrochemical Deposition, Wiley, 2006.
- D. Zabetakis, W. J. Dressick, Selective Electroless Metallization of Patterned Polymeric Films for Lithography Applications, ACS Appl. Mater. Interfaces 1 (2009) 4-25.
- R.W. Martin, Y.-H. Chu, R. Ramesh, Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films, Materials Sci. Eng. R 68 (2010) 89–133.
- M. Aliofkhazraei, A. S. Rouhaghdam, Fabrication of Nanostructures by Plasma Electrolysis, Wiley-VCH, 2010.
- Yu.D. Gamburg, G. Zangari, Theory and Practice of Metal Electrodeposition, Springer, 2011.
- M. Schlesinger, M. Paunovic, Modern electroplating, Wiley, 2011.
- Fundamentals of Electrochemical Deposition (editor U.S. Mohanty), Nova, 2012.
- Handbook of Sputter Deposition Technology (editors K. Wasa, I. Kanno, H. Kotera), Elsevier, 2012.
- Handbook of Thin Film Deposition (editor K. Seshan), Elsevier, 2012.
- V. G. Dubrovskii, Nucleation Theory and Growth of Nanostructures, Berlin-Heidelberg, Springer, 2014.
- H. Frey, H.R. Khan, Handbook of Thin Film Technology, Springer, 2015.
- G. Greczynski, I. Petrov, J. E. Greene, L. Hultman, Paradigm shift in thin-film growth by magnetron sputtering: From gas-ion to metal-ion irradiation of the growing film, J. Vacuum Sci. Technol. A 37 (2019) No 060801.
- M. Powers, B. Derby, S.N. Manjunath et al., Hierarchical morphologies in co-sputter deposited thin films, Phys. Rev. Mater. 4 (2021) No 123801.
- J. Li, G.K. Ren, J.H. Chen et al., Facilitating Complex Thin Film Deposition by Using Magnetron Sputtering: A Review, JOM 74 (2022) 3069-3081.
- J.T. Gudmundsson, A. Anders, A. Keudell, Foundations of physical vapor deposition with plasma assistance, Plasma Sources Sci. Technol. 31 (2022) No 083001.