Fabrication of nanostructures and nanoscale devices. Part 3.

Galina A. Tsirlina

galina.tsirlina@nanocenter.si galina.tsirlina@protonmail.com

See the lectures at https://www.nanocenter.si/qt-future/education-2/

QT Future, Fall 2023

<reformulated> What is the difference of graphite and graphene?

200There are no nanotubes, graphene, and other lowdimensional carbons in the 150 phase diagram. They all are metastable, but long-lived. Diamond в 100 Phys. Rev. Lett. 97 (2006) 187401 50Liquid B-1111 Graphite 🕯 4000 7/K 2000 6000

2500

3000

2000

Raman shift (cm⁻¹) Nuclear graphite = heat-treated coke, J. Phys.: Conf. Ser. 371 (2012) 012017

1500

2600

2700

Raman shift (cm⁻¹)

2800

TEM images

Nano Letters 9 (2009) 30

How to recognize the number of layers?

Phys. Rev. Lett. 97 (2006) 187401

> Pencil lead: graphite + clay, J. Mater. Res. 31 (2016) 2578

Q2

Parts 3-4, Outline

Fabrication of Thin Films (2D fragments of nanostructures)

- Atomically flat supports (etching, polishing, termination)
- Exfoliation of 'van der Waals' thin films
- Chemical vapor deposition (CVD) (graphene; what else can be deposited)
- Epitaxial films (molecular beam epitaxy (MBE), atomic layer deposition (ALD))

Will be continued on Nov 3 (Pt 4):

•Physical vapor deposition (thermal, laser, magnetron; growth control and monitoring)

- •Wet deposition (electroless)
- •Wet deposition (electrochemical)

Silicon supports (wafers)

Chemical etching: oxide formation and dissolution

There are hundreds of recipes and commercial etchants. Dry (gas plasma) etching is also possible, known as Reactive ion etching (RIE).

Dopants: B, P, N, metals

Orientations: (100) is the most Usual

Oxide: 10 – 300 nm

«Pyramidal» etching in H₂O₂+HF

Perovskite supports (ABO₃)

-

Substrate	Orientation	Structure	Lattice constants (Å)
NdScO ₃	(110)	Orthorhombic	a = 5.57 b = 5.77 c = 7.99
KTaO₃ GdScO₃	(001) (110)	Cubic Orthorhombic	a = 3.988 a = 5.48 • A b = 5.76 • B a = 7.02
DyScO ₃	(110)	Orthorhombic	c = 7.92 6 0 a = 5.54 b = 5.71 c = 7.89
SrTiO ₃ La _{0.18} Sr _{0.82} Al _{0.59} Ta _{0.41} O ₃ (LSAT)	(001), (110), (111) (001)	Cubic Cubic	a = 3.905 a = 3.88 SrTiO ₃ (001), Ti-terminated
NdGaO₃	(001), (110)	Orthorhombic	a = 5.43 b = 5.50 c = 7.71
LaAlO ₃	(001)	Rhombohedral	a = 3.78
SrLaAlO ₄	(001), (100)	Tetragonal	a = 3.75 c = 12.63 $c = 12.63$ $c =$
YAlO ₃	(110)	Orthorhombic	a = 5.18 b = 5.33 c = 7.37

Progr. Surface Sci. 92 (2017) 117

General scheme of support pretreatment

To construct some nanostructure on support, we can follow two different technological schemes

'Mixed' schemes are also possible

Graphite

Layered crystal structures, which allow exfoliation

Nobel lecture of A. Geim, 2010, https://www.nobelprize.org/prizes/physics/2010/geim/lecture/

1 mm

Chem. Rev. 107 (2007) 718

Graphene «twisting» induced by the lower number of bonds at the edges

100 nm

Molecular dynamics, simulation:

Carbon 47 (2009) 3099

Hexagonal boron nitride (2D insulator), geometry is very similar to graphene

MX₂ compounds (M = metal, X = S, Se, Te)

Metal

Metal

1L:1.1eV

1L:1.1eV

Bulk: 1.0 eV

Semiconducting

Semiconducting

	C
۱b	Metal; superconducting; CDW
ā	Metal; superconducting; CDW
νo	Semiconducting 1L: 1.8 eV Bulk: 1.2 eV
N	Semiconducting 1L: 2.1eV 1L: 1.9 eV

Bulk: 1.4 eV

Metal; Se
superconducting;
CDW
Metal;
superconducting;
CDW
Semiconducting
1L: 1.5 eV
Bulk: 1.1eV
Semiconducting
1L: 1.7 eV
Bulk: 1.2 eV

Те

Nature Nanotechnol. 7 (2012) 699

Various possibilities to exfoliate

There are numerous layered materials with various exfoliation energies, which can be also obtained by CVD.

For subsequent and mixed schemes, we need to form 2D films directly on supports.

We can also exfoliate the films to have larger and better quality flakes

Sputtering	support1	
or		support 2
chemical vapor deposition (CVD)		

Activation energy results from energy barrier, which can be roughly estimated from quantum chemistry (example for Cu(111) <black> and Cu(100) <red> surfaces

2D Mater. 4 (2017) 042002

For reactions with **bond rupture**, activation energy is more or less close to bond energy.

Bond energies, kJ/mol (100 kJ/mol ~ 1 eV)

		н—н	432	N—H	391	I—I	149	$\mathbf{C} = \mathbf{C}$	614
Energy vs. reaction coordinate (e.g. interatomic distance) Initial state Final state Bond energy	Energy vs. reaction	H—F	565	N—N	160	I—Cl	208	C ≡ C	839
	H—CI	427	N—F	272	I—Br	175	0 = 0	495	
	H—Br	363	N—CI	200			C = O*	745	
	Initial state	H—I	295	N—Br	243	S—H	347	C≡O	1072
	initial state			N—O	201	S—F	327	N = 0	607
	Final	С—Н	413	0—Н	467	S—CI	253	N = N	418
	state	c–c	347	0—0	146	S—Br	218	N ≡ N	941
	Sond energy	C—N	305	0—F	190	s—s	266	C ≡ N	891
		с—о	358	o—ci	203			C = N	615

Surface diffusion (migration) step

Example of STM visualization (W), 1D surface diffusion

The rate of surface diffusion roughly corelates with the melting temperature, but also depends on interaction with support.

Arrhenius behavior is also typical for the rates these steps.

Adsorption step

However the surface coverage with adsorbate decreases with temperature.

The principle role of adsorption step is to weaken the bond, to make its rupture easier in the course of subsequent chemical step.

CVD, controlling parameters

Complexity of the reactor is higher for lower pressure, technologically realistic CVD is mostly atmospheric pressure

Old-fashioned MOCVD precursors for III-V and II-VI binary semiconductors

Compound	Symbol	Melting point (°C)	Boiling point at 760 mm (°C)	Vapor pressur (mm)	re
Dimethylzinc	DMZn	-42(-29)	46	124 at 0°C	$-H_3C$ CH_3
Diethylzinc	DEZn	-28	118	15 at 20°C	211
Dimethylcadmium	DMCd	-4.2	105.5	350 at 80°C	
Trimethylaluminum	TMAl	15.4	126	8.4 at 20°C	
Trimethylgallium	TMGa	-15.8	55.7	64.5 at 0°C	
Triethylgallium	TEGa	-82.3	143	18 at 48°C	
Diethylgalliumchloride	DEGaCl	_		_	
Trimethylindium	TMIn	88.4	135.8	7.2 at 30°C	
Triethylindium	TEIn	-32	184	3 at 53°C	Angew Chem Int Ed 50 (2011) 11685
Tetramethyltin	TMSn	- 53	78	10 at −20°C	Angew. Chem. Int. Lu. 50 (2011) 11085
Tetraethyltin	TESn	-112	179.5-181.5	10 at 73°C	
Tetramethyllead	TMPb	-27.5	110	10 at 4.4°C	
Tetraethyllead	TEPb	-135	198-202	10 at 78°C	
Triethylphosphine	TEP	-88(-85)	127	—	All these compounds contain metal-
Trimethylantimony	TMSb	-87.6(-62.0)	80.6		carbon bond, long enough (ca. 2 A),
Dimethyltelluride	DMTe	-10 (-150)	82 (93.5)	_	and its with bond energies of 1.5 – 3 eV.
Diethyltelluride	DETe		137–138		

Ann. Rev. Mater. Sci. 12 (1982) 243-269

Metal-organic CVD (MOCVD), precursors

Optimal metal-ligand bond energy:

- stability under evaporation
- easy bond rapture

Ability to absorb on the support

Ultraviolet-assisted injection liquid source CVD (UVILS-CVD)

Multisource CVD

High temperature superconductor (HTSC), $YBa_2Cu_3O_{6.5+x}$ or $YBa_2Cu_3O_{7-x}$

(also named "1-2-3")

PhysicaC 174 (1991) 1

Chem. Vap. Deposition 3 (1997) 9-26

Crystallographic orientation

Low-angle boundaries

0

Oxygen nonstoichiometry

Precursor evaporation:

- total pressure
- flow rate

Oxidizer pressure

Y, Ba, Cu dosing

Temperature

Precise morphology, epitaxial deposition

Single-source CVD

Up to 100 nm/min, but incomplete surface coverage

S. I. Koľtsov

Repeated self-terminated reactions (reagent is provided under pulse mode)

Atomic Layer Deposition (ALD) or Atomic Layer Epitaxy (ALE) or Molecular Layering

T. Suntola

Multisource CVD, pulse mode

Single crystalline well-defined supports

Rotating supports

Very slow, up to ~1 nm/min

J. Appl. Phys. 97 (2005) 121301

Chem.Mater. 17 (2005) 3475

TMA DMAI

200

ALD Cycles

300

Δ

 \diamond

150 °C

Water

O₂ plasma

100

500

400

300

200

100

0

0

Film Thickness (Å)

[Ti(Cp*)(OMe)₃] at 350 °C

To keep growth rate approximately the same in each cycle, and also not too low, intermediate temperatures are required ("ALD window").

Epitaxial growth in case of pronounced lattice mismatch

G→[011]

[011]

Phys. Rev. B 78 (2008) 035305

ALD at non-planar interface: CeO_2/TiO_2 photonic crystals

Small 5 (2009) 336-340

2D material: books and reviews on CVD and epitaxial deposition

- P.D. Dapkus, Metalorganic Chemical Vapor Deposition, Ann. Rev. Mater. Sci. 12 (1982) 243-269.
- S.M.Gatis, Surface Chemistry in the Chemical Vapor Deposition of Electronic Materials, Chem. Rev. 96 (1996) 1519 1532.
- V. A. Shchukin, N. N. Ledentsov, D. Bimberg, Epitaxy of Nanostructures, Springer, 2004.
- M. J. Allen, V.C. Tung, R. B. Kaner, Honeycomb Carbon: A Review of Graphene, Chem. Rev. 110 (2010) 132-145.
- D. Wei, Y. Liu, Controllable Synthesis of Graphene and Its Applications, Adv. Mater. 22 (2010) 3225-3241.
- Q. H. Wang, K. Kalantar-Zadeh, A. Kis et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nature Nanotechnol. 7 (2012) 699-712.
- S.E. Potts, W.M.M. Kessels, Energy-enhanced atomic layer deposition for more process and precursor versatility, Coord. Chem. Rev. 257 (2013) 3254-3370.
- T. Hatanpää, M. Ritala, M. Leskelä, Precursors as enablers of ALD technology: Contributions from University of Helsinki, Coord. Chem. Rev. 257 (2013) 3297-3322.
- Two-dimensional Materials Synthesis, Characterization and Potential Applications (editor P.K. Nayak), IntechOpen, 2016
- A. Biswas, C.-H. Yang, R. Ramesh, Y. H. Jeong, Atomically flat single terminated oxide substrate surfaces, Progr. Surface Sci. 92 (2017) 117–141.
- T. Niu, J. Zhang, W. Chen, Atomic mechanism for the growth of wafer-scale single-crystal graphene: theoretical perspective and scanning tunneling microscopy investigations, 2D Mater. 4 (2017) No 042002.
- K. A. Madurani, S. Suprapto, N. I. Machrita et al., Progress in Graphene Synthesis and its Application: History, Challenge and the Future Outlook for Research and Industry, ECS J. Solid State Sci. Technol. 9 (2020) No 093013.
- L. Seravalli, M. Bosi, A Review on Chemical Vapour Deposition of Two-Dimensional MoS₂ Flakes, Materials 14 (2021) No 7590.
- C. Gautam, S. Chelliah, Methods of hexagonal boron nitride exfoliation and its functionalization: covalent and non-covalent approaches, RSC Adv. 11 (2021) 31284-31327.
- P.P. Pham, S.C. Bodepudi, K. Shehzad et al., 2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges, Chem. Rev. 122 (2022) 6514 – 6613.