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Abstract
Noisy intermediate-scale quantum (NISQ) devices are spearheading the second quantum revolution. Of these, quantum
annealers are the only ones currently offering real world, commercial applications on as many as 5000 qubits. The size of
problems that can be solved by quantum annealers is limited mainly by errors caused by environmental noise and intrinsic
imperfections of the processor. We address the issue of intrinsic imperfections with a novel error correction approach,
based on machine learning methods. Our approach adjusts the input Hamiltonian to maximize the probability of finding the
solution. In our experiments, the proposed error correction method improved the performance of annealing by up to three
orders of magnitude and enabled the solving of a previously intractable, maximally complex problem.
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1 Introduction

Quantum annealers have proven themselves useful in
solving various problems in material science (Harris et al.
2018; King et al. 2018; Bando et al. 2020; Kairys et al.
2020), optimization (Neukart et al. 2017; Orús et al.
2019), and machine learning (Mott et al. 2017; Li et al.
2018; Willsch et al. 2020; Jain et al. 2020), and have
shown scaling advantage in problem solving efficiency in
some cases (King et al. 2021; Albash and Lidar 2018).
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However, the quantum computers used in these cases have
trouble excluding the impact of device imperfections and
the outside environment on the quantum dynamics taking
place within the quantum device (Job and Lidar 2018;
Bando et al. 2020; Boixo et al. 2016; Gardas et al. 2018;
Gardas and Deffner 2018). The resulting errors limit the
potential of quantum simulations or quantum speed-up in
solving classical optimization problems. Quantum error
correction assumes two very different realizations in the
two quantum computing models currently used in practice.
The quantum gate model (e.g., Google and IBM) already
has an established quantum threshold theorem, which states
that an arbitrarily long quantum computation circuit can
be constructed, provided the qubits involved have a low
enough error rate. However, quantum annealing has no
such established theorem. Error correction algorithms are
therefore scarce and so are examples of research on quantum
annealing error correction and topology compensation. The
problem of noise in quantum annealing has so far been
tackled only in a few different ways that do not involve
improvements to hardware. The first is quantum annealing
error correction, based on introducing an energy penalty
along with encoding and error correction (Pudenz et al.
2014). The second approach involves compensating for
differences in chain susceptibility due to the embedding
topology (Raymond et al. 2020) and the third evaluates
“Hamiltonian noise” (Zaborniak and de Sousa 2021), which
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can then be subtracted in a similar manner as in our work.
However, using the terminology considered in this paper,
Ref. Zaborniak and de Sousa (2021) considers only the
diagonal of the Hamiltonian Qi,i , while we consider the full
Hamiltonian Qi,j .

In this paper, we address the issue of noise in D-Wave’s
2000Q quantum annealer. The way a problem is solved
on this device is to package the problem at hand into a
Hamiltonian, employing the quadratic unconstrained binary
optimization (QUBO) formalism

H =
∑

i,j

Qi,j qiqj , (1)

where specifying the matrix Q corresponds to packaging
up the problem as input to the quantum processing unit
(QPU). The elements Qi,j are couplers if i �= j and biases
if i = j . qi represents a logical qubit (LQ) with the possible
values of 0 and 1, which is used in order to interpret the
output solution provided by the QPU. There is an important
distinction between LQs and physical qubits (PQs). PQs are
non-abstract actual physical qubits, which are manipulated
by the couplings and biases applied to them during the
quantum annealing process in the form of physical magnetic
fields on the chip. Their connectivity is fixed into a so-called
Chimera graph (D-Wave Systems Inc 2021), where each
PQ is connected to 6 neighbors. However, the connectivity
which is required between LQs by the matrix Q is rarely the
same as the Chimera graph. In order to realize the desired
connectivity, additional PQs and couplings are added, so
that each LQ is represented by a chain, composed of several
PQs. This mapping between LQs and PQs is called an
embedding (D-Wave Systems Inc 2021).

There are many different sources of noise present on
the QPU, as specified in the documentation provided by
D-Wave: (i) background susceptibility which comes from
next-nearest neighbor interactions and leakage of biases,
(ii) 1/f flux noise is exerted on qubits which manifests
itself as a drift of their properties on a larger time-scale,
such as between different problem submissions, (iii) the
problem Hamiltonian, which is specified as part of the
input to the machine has a finite resolution, (iv) the
ratio between biases and couplings can vary for different
annealing parameters, and (v) qubits cannot be made
perfectly identical. In addition, several studies have revealed
that the QPU is inherently coupled to its environment, which
brings in (vi) thermal effects (Albash et al. 2015; Benedetti
et al. 2016; Boixo et al. 2016; Buffoni and Campisi 2020)
and (vii) random quantum fluctuations in the Josephson
current present in qubits (Bando et al. 2020). We take all
of these effects into account by modelling the noise on the
QPU as

Qsubmitted = Q0 + dQcalibration + dQnoise, (2)

where Q0 represents the original Hamiltonian and Qsubmitted

is the Hamiltonian, corrupted by noise. Each element of
dQnoise is a Gaussian random variable with mean 0 and
standard deviation σ . Elements of dQcalibration represent
the shifts of the mean of the Gaussian random variables.
The idea of this work is to find the appropriate dQcalibration,
which we then subtract from Qsubmitted. We assume that
dQcalibration is constant and represents the combined sys-
tematic noise from all the aforementioned noise sources.
The degree to which we can reduce the impact of noise is
presently unknown and determining it the motivation of this
investigation.

The rest of the paper is structured as follows. In
Section 2, we introduce the addressed physical problem
of electron ordering on a triangular lattice, as well as
present our definition of annealing performance and the
methodology for calculating it. In Section 3, we report on
our investigation of the stability of annealing performance
measurements and the effects of different embeddings
on annealing performance. In Section 4, we introduce
two methods for quantum annealer correction, present the
results of their empirical evaluation, and comment on the
envisioned applicability of the methods. In Section 5, we
present new insights on the nature of systematic noise in
quantum annealers, which could inspire new and better
approaches to dealing with corresponding issues.

2Methods

2.1 Electron ordering on a triangular lattice

The physical problem of finding the ground state of a system
of electrons on a triangular lattice was already studied
in a slightly different version without error correction
(Vodeb et al. 2019). The problem is represented by a
two-dimensional Hamiltonian

Q0 = 1

2

N∑

i,j

V (i, j)(qi − q̄)(qj − q̄) − μ

N∑

i

qi (3)

where V (i, j) = V0 exp (−ri,j / ls)/ri,j , ls is the screening
radius, ri,j = |ri − rj |, ri is the ith out of N lattice sites,
qi ∈ {0, 1} describes whether an electron occupies the
lattice site i or not, the sum runs over all lattice sites, and
q̄ = ∑N

i qi/N . q̄ is the magnitude of the background and
constant positive charge on each lattice site, which needs to
be included in order to satisfy electro-neutrality and prevent
electrons from escaping to the edges of the system. The
number of electrons in the system is varied by the chemical
potential μ. In this paper, we considered a 4 × 4, 5 × 5 and
6 × 6 triangular lattice with open boundary conditions with
μ = −0.2 and V0 = 1 set to a fixed value for which the
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ground state of Q0 is an electronic lattice with a density of
1 electron per 3 atomic sites.

In order to be able to map the electron ordering problem
onto a D-Wave machine, we simplify Q0 to Q0 =∑N

i,j Qi,j qiqj , where Qi,j = 1
2V (i, j)− 1

2N

∑N
k (V (i, k)+

V (k, j)) + 1
2N2

∑N
k,l V (k, l) − μδi,j . The studied physical

problem requires maximal connectivity between logical
qubits qi , which is represented by a fully connected graph or
a clique. Figure 1a shows the required connectivity, where
i in qi runs from 1 to 16. A logical qubit is therefore
represented by a chain of 5 physical qubits in this case,
colored differently for each i. Such a connectivity, when
embedded onto D-Wave’s Chimera graph of physical qubits,
is one of the most complex problems one can attempt to
solve on a quantum annealer. Therefore, if we are able to
show that our error correction algorithms work in this case,
they will also work well with other complex problems.

2.2 Annealing performance

Because the result of a single quantum annealing experi-
ment is stochastic, annealing is typically repeated hundreds
or thousands of times, producing a sample of reads. Since
the goal is usually to find the global minimum of the energy,
generally only the read with the lowest energy is of interest.

We consider the performance of the annealer to be better
when a larger fraction of the reads finds the ground state.
In order to summarize the performance of the annealer in
a particular experiment from the sample, we look at three
quantities:

• Success rate: the fraction of reads with energy equal to
the energy of the ground state.

• Mean energy: the mean across the energies of the entire
sample.

• Chain break fraction: the fraction of reads with broken
chains where not all qubits in a chain end up in the same
state.

In the process of calibrating the quantum annealer, we seek
to maximize the success rate and minimize the mean energy
and chain break fraction. The three quantities are highly
(inversely) correlated and can be used interchangeably in
many cases. If the ground state of the system is not known,
the success rate can not be calculated. In that case, the
simplest solution is seeking to minimize the mean energy
of the entire sample. However, if we know the ground state
of the system, or at least its energy, we can calculate the
relative energy of each read, which makes the interpretation
of results easier. If the state vector of a given sample is x

and the ground state of a Hamiltonian Q0 (in QUBO form)

Fig. 1 a An example of an embedding. Physical qubits are represented
with black dots and the connections between them with black lines.
Logical qubits are enumerated and shown with colored connections
between physical qubits. Each of the colored connections is forcing
the two physical qubits to assume the same value. Therefore, a logi-
cal qubit is a chain of physical qubits, all (or most) of which assume

the same value. There are post-processing methods in place on the
quantum computer, which take care of disagreements between phys-
ical qubits in a chain. b Distributions of the success rate for three
samplings of size 1000, when using the same embedding for the three
samplings, c when using translated embeddings, and d when using
distinct embeddings
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is labelled x0, the energy of the state x can be calculated
as

E(x) = xT Q0x.

We can then define the relative energy of a given quantum
state as

Er(x) = E(x) − E(x0)

and the success rate can be calculated as the fraction of
reads with relative energy zero (or close to it, to account for
rounding errors).

3 Embeddings and noise

Before tacking the problem of quantum annealing correc-
tion, we first study the reproducibility of experiments on a
quantum annealer. Furthermore, we illustrate the effect of
different embeddings on the performance of annealing. We
performed all experiments in this section on the 4×4 system
under identical settings.

3.1 Statistics of annealing performance

Generally, when performing experiments on a quantum
annealer, users perform each single experiment with several
hundred reads and take the best result. In our work, we
are studying the performance of this procedure, quantified
through the success rate. To that end, we wish to study
the distribution and statistical properties of the success
rate, when such an experiment is repeated many times.
We repeat the experiment 1000 times, each time reading
500 quantum states. We calculate the success rate of each
experiment and thus obtain 1000 samples of the success
rate. However, due to variable external conditions affecting
noise in the quantum system, the performance of annealing
may vary when repeated at different times. To account for
this, we repeat the sampling of 1000 experiments two more
times, with a delay of around 30 min between sampling.
A histogram for each of the three samplings is depicted
in Fig. 1b, where different colors correspond to different
samplings. The distributions are symmetric, with means
close to 0.5 and standard deviations around 0.08. The
spread in success rate within one sampling is relatively
large — in other words, the performance of annealing can
vary significantly between identical experiments. On the
other hand, a comparison of the three samplings reveals
no significant difference in the distributions. Therefore,
repeating samplings at different times to account for
external factors is not necessary for the purposes of our
study.

3.2 The effect of embeddings on annealing
performance

The described experiment used a fixed minor embedding,
depicted in Supplementary Fig. 1a. It is well established that
the choice of embedding can have a significant effect on the
performance of annealing. To study this with our approach,
we vary the embedding of the problem in two different
ways. First, we merely translate the original embedding
within the lattice of the quantum computer, while keeping
its shape and topology intact. In a translated embedding, the
relative location (i.e., on the edge or in the middle of a chain)
of each physical qubit, used for inter-chain coupling, is the
same as in the original embedding. The only difference
between translated embeddings is which individual physical
qubits are used by an embedding. By translating the original
embedding twice, we end up with three embeddings with
identical topology, but using different physical qubits.
The three embeddings are illustrated in Supplementary
Fig. 1a–c. Using each of the three embeddings, we
perform 1000 experiments, each with 500 reads. The
corresponding distributions of success rate are depicted in
Fig. 1c. Next, we generate three new minor embeddings
that are both translated and have a different topology as
compared to the original embedding. They are illustrated
in Supplementary Fig. 1d–f. The respective distributions of
success rate, obtained by performing 1000 experiments with
500 reads for each of the three embeddings, are depicted in
Fig. 1d.

We observe significant differences between the success
rate distributions of the translated embeddings, and even
greater differences between the distributions of completely
different embeddings. The fact that embeddings with an
identical topology but different positioning in the D-Wave
lattice yield significantly different distributions leads to
the conclusion that the topology of the embedding is
not the only important factor for performance. In other
words, the calibration error is specific to each individual
physical qubit. On the other hand, the topology of the
embedding has an important effect as well, as evidenced
by the larger differences in Fig. 1d for embeddings
that are both translated and have a different topology.
There is one final important observation we can make
from Fig. 1b–d. Because the annealing performance
varies significantly between different embeddings, this
hints towards a simple but possibly effective method of
improving the performance — generating and trying out
different embeddings. However, it must be emphasized
that due to the high level of random noise present, as
well as the stochastic nature of quantum measurements,
experiments that seek to evaluate annealing performance
must be repeated many times to get reliable performance
estimates.
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4 Quantum annealing correction

We consider the QUBO Hamiltonian Q to be the input
to the quantum annealer. In the process of translation to
the physical system, the Hamiltonian is corrupted by both
random and systematic noise. Can we learn to correct the
input so as to produce the correct output, and in this way
counteract systematic noise? We introduce small corrections
to the input Hamiltonian:

Q = Q0 + dQ,

where Q is the input to the D-Wave sampler, Q0 is
the original Hamiltonian that corresponds to the physical
problem we are solving, and dQ is the calibration matrix,
with |dQij | � |Q0ij

|, or alternatively, ||dQ|| � ||Q0||,
where ||Q0|| indicates the matrix norm of Q. We vary the
elements of dQ and try to maximize the success rate. The
elements of Q correspond to the coupling strength between
pairs of logical qubits. As an upper-triangular matrix, Q

has D(D + 1)/2 values for a fully connected system of
D × D logical qubits. In this work, we study the calibration
of the sample problem on three system sizes: 4 × 4, 5 ×
5, and 6 × 6, with the corresponding dimensionalities of
136, 325, and 666. The calibration of the success rate
through varying the matrix elements is a very challenging
problem of noisy function optimization in an extremely
high-dimensional space. Since we know nothing of the
landscape of the systematic noise function, we employ a
data-driven approach. We first conduct a large number of
experiments by randomly sampling dQij values and then
employ machine learning methods for regression to analyze
the data.

4.1 Sampling the dQ space

Before we can sample the dQ matrices for our dataset,
we must properly define the space we are interested in.
When we invoke the D-Wave sampler for a given Q, the D-
Wave system performs a few modifications on the matrix.
First the matrix is normalized so that the largest absolute
value of its elements is 1. Next, the system transforms the
matrix from the logical qubit representation to the physical
qubit representation, using the embedding we provide.
Finally, the system constructs qubit chains by assigning
the chain strength parameter to the couplings between
physical qubits in each chain. The normalization of the
input after our corrections could compromise our data and
confuse modelling. To avoid it, we normalize the Q0 matrix
ourselves and place a constraint on the sampling of dQ so
as to ensure that the normalization is not broken by adding
dQ. We define the absolutely largest element of Q0 as

Qmax = max
ij

|Q0ij
|,

and derive the allowed range of each matrix element as

η

(
−1 − Qij

Qmax

)
≤ dQij ≤ η

(
1 − Qij

Qmax

)
,

where 0 ≤ η ≤ 1 denotes the fraction of the range of each
matrix element we wish to consider.

The above formulation, with η = 1, describes the entire
space of possible calibration matrices dQ, constrained only
by normalization. We have assumed that the corrections
of the input Hamiltonian are small. We control the size
of the corrections through the parameter η. Choosing a
very small η risks cutting the best dQ out of our search
space. On the other hand, a large η vastly increases the
size of our search space and consequently the QPU time
demands. More importantly, a large η carries the risk that
we wander so far away from Q0 that the problem considered
by the quantum computer no longer bears any connection
to the physical problem we are studying. For example, the
space of all Q also contains a Hamiltonian that represents
a degenerate system with all energies equal to the ground
state energy of the system we are interested in. Such a Q

would achieve seemingly perfect annealing performance,
but would be meaningless in practice. In order to ensure that
our calibrated system is still solving the correct problem,
it is paramount to keep the corrections of the Hamiltonian
relatively small. For our experiments, we used the value
η = 0.05 as an educated guess.

Now that we have defined the boundaries of the high-
dimensional space we are to explore, we randomly sample it
to generate the set of calibration matrices to be evaluated on
the quantum annealer. We employ latin hypercube sampling
(McKay et al. 2000), a method for random sampling from
multidimensional distributions that ensures good coverage
of the hyperspace, while keeping the required number of
samples low. We study the annealing performance of three
samplings, one for each of the three system sizes. In each
sampling, we evaluate 10000 calibration matrices, each
comprising 500 reads from the quantum annealer.

4.2 Analysis of the data

The three constructed datasets are summarized in Fig. 2.
There are significant differences in annealing performance
for different system sizes. For the 4 × 4 system, the mean
success rate is close to 50%, for the 5 × 5 around 14%, and
for the largest 6 × 6 system, the mean success rate is only
around 0.5%. In fact, for many calibration matrices for the
6 × 6 system, not even a single read ended up in the ground
state. A comparison between the distributions of the success
rate and mean relative energy reveals that while the success
rate is a nicer and more intuitive metric, its usefulness drops
sharply when the annealing performance is very poor. In
such cases, it is better to use the mean relative energy as the
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Fig. 2 Distributions of the mean relative energy (left) and the success
rate (right), obtained by sampling the space of calibration matrices
dQ, for three system sizes. For each system size, 10000 matrices were
sampled. Each sample is composed of 500 reads from the quantum

annealer, which are summarized with the mean relative energy and suc-
cess rate statistics. The mean relative energy and success rate for the
original Hamiltonian with no calibration (Q = Q0) are depicted with
a dashed line of the corresponding color

measure of annealing performance. In Fig. 2, the annealing
performance for the uncalibrated Hamiltonian (Q = Q0)
is depicted by a dashed line for each system. We can see
that, for all system sizes, a good fraction of the evaluated
calibration matrices achieves better annealing performance
than the original matrix. This observation is surprising,
since we expected it to be very difficult to find a calibration
that improves performance in the high-dimensional dQ

spaces. In fact, taking the calibration matrix that yields
the best annealing performance for each system size, we
arrive at the results summarized in Table 1. The results
are already impressive and demonstrate the effectiveness
of error correction by corrections to the input Hamiltonian.
Based on these results, we define the first, simple but
effective, error correction algorithm — the argmax strategy.

4.3 Argmax strategy

Algorithm 1 defines the argmax strategy for error correction
in quantum annealers.

Algorithm 1 The argmax strategy of adaptive quantum annealing
correction.

Since the argmax strategy is based entirely on latin
hypercube sampling, Table 1 already summarizes its

performance. In order to assess how the strategy behaves
with a lower number of samples, we perform repeated
bootstrap subsampling on the gathered data (see SI for
details on the methodology) and depict the resulting curves
in Fig. 3a. We observe that significant improvements
in annealing performance can be achieved even for
sample sizes as small as 10 or 100 calibration matrices.
Increases in sample size offer diminishing returns, as the
curves asymptotically approach the maximum of the full
sample.

4.4 Predictive strategy

The argmax strategy is limited to the calibration matrices
we have sampled and evaluated. In the following, we
employ machine learning methods to develop a strategy
that interpolates or even extrapolates the assembled data
in order to find the best calibration matrix. We evaluate
the predictive performance of models obtained by different
machine learning methods through 5-fold cross-validation.
We randomly partition the dataset into 5 fractions. Models
are trained on four of the fractions (training set) and attempt
to predict the fifth (testing set) fraction. In each of the five
iterations, a different fraction is used as the testing set. In the
end, the predictions are pooled together and the prediction

Table 1 Annealing performance when using the original Q0,
compared to the best annealing performance measured in the sample
of 10000 calibrated matrices Q = Q0 + dQ, which corresponds to the
argmax strategy

System 4×4 5×5 6×6

Success rate of original Q0 0.50 0.20 0.0001

Best success rate of dQ sampling 0.88 0.62 0.08

% improvement in success rate 78% 210% 80000%
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Fig. 3 a Dependence of the
success rate of the argmax
calibration strategy on the size of
the training dataset (circles and
full line). Calculated through
bootstrap resampling with 1000
repetitions. The results are
compared with the success rate
without calibration (dashed
line). Standard deviations of
success rate are indicated by the
shaded areas. The figures below
show the dependence of the
success rate of the linear
regression calibration strategy
for the b 4 × 4, c 5 × 5, and d
6 × 6 systems on the largest
element of the calibration matrix
dQij allowed (circles and error
bars). For each system size, the
results are compared with the
success rate of the argmax
strategy (dashed line) and with
the success rate without
calibration (dotted line)

performance is evaluated. As the metric of comparison, we
use the coefficient of determination, defined as

R2 = 1 −
∑

i (ỹi − yi)
2

∑
i (ȳ − yi)2

,

where ỹi indicates the predicted annealing performance
of the ith calibration matrix, ȳ is the mean annealing
performance for the testing set, and yi denotes the measured
annealing performance of the ith calibration matrix. The
coefficient of determination can be interpreted as the portion
of variance in the data explained by the model. A perfect
model would achieve R2 = 1, whereas R2 < 0 indicates
the model is worse than simply taking the average over
the test set. In the analysis of the data, we observed high
(anti) correlation between mean energy and success rate as
measures of annealing performance. Success rate is proble-
matic for the 6 × 6 system, since many calibration matrices
do not end up with any reads in the ground state. For this
reason, we have chosen mean relative energy as the measure
for annealing performance when training predictive models,
even though the success rate offers easier interpretation.

In Table 2, we report the R2 for ordinary linear
regression — LR, linear regression with L1 regularization
— Lasso (Tibshirani 1996), linear regression with L2
regularization — Ridge (Hoerl and Kennard 1970), support
vector regression with a kernel of radial basis functions
— SVR (Drucker et al. 1997), ensembles of decision
trees for regression — random forests — RF (Breiman
2001), as well as feedforward neural networks — FNN
(Schmidhuber 2015). The details of the employed methods
are reported in Supplementary Information. The coefficients

of determination are not high, which is consistent with the
large variance of the distributions observed in Fig. 1. For all
system sizes, all variations of linear regression, as well as
SVR and FNN, achieve similar predictive performance. The
predictive performance drops as we increase system size.
This is expected, due to the curse of dimensionality — the
dimensionality of the problem increases quadratically with
system size, but our sample size remains constant (Friedman
et al. 2001). Since linear regression is the simplest and most
robust of the models we have tried and it still achieved
competitive predictive performance, we have chosen it for
implementing the predictive strategy.

We now have a model that predicts mean relative
energy for a given calibration matrix dQ and we can
use it as a stand-in for experiments on the quantum

Table 2 The coefficient of determination R2, achieved by different
models for the task of predicting the mean energy, given calibration
matrices dQ, for three different system sizes. The best performing
method for each system size is highlighted in bold font

LR Lasso Ridge SVR RF FNN

4×4 0.475 0.476 0.475 0.454 0.213 0.463

5×5 0.272 0.274 0.273 0.134 0.067 0.277

6×6 0.091 0.113 0.109 0.076 0.019 0.076

A higher R2 indicates a better model, with the maximal possible
value being R2 = 1. The machine learning methods used are linear
regression (LR), linear regression with L1 regularization (Lasso),
linear regression with L2 regularization (Ridge), support vector
machines with an RBF kernel (SVR), ensembles of decision trees
(random forest — RF), and feedforward neural networks (FNN)
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annealer. To find the best calibration, we use a method for
numerical minimization (in our case, differential evolution
as implemented in Python-Scipy (Virtanen et al. 2020)) to
find the minimum of the mean relative energy. Minimization
requires bounds on the high-dimensional space. Since we
know only that the calibration matrix should be small in
comparison to Q0, we once again invoke the dQij ranges
defined earlier and vary the range fraction η. For each
value of η, we minimize the model to obtain a candidate
calibration matrix.

Algorithm 2 The predictive strategy of adaptive quantum annealer
correction.

We then evaluate the matrix on the quantum annealer,
repeating the measurement 10 times, each time with 500
reads, and compute the mean and standard deviation of the
measured success rate. By performing this procedure for
each value of η (using the same model) and for each system
size (using the respective models), we obtain the curves
depicted in Fig. 2b–d.

Despite the relatively low coefficients of determination,
the proposed strategy shows large improvements in anneal-
ing performance. The predictive strategy outperforms the
argmax strategy for the 4 × 4 system by 14% and for the
5 × 5 system by 155%, but falls short of it for the 6 × 6 sys-
tem. The observations are easy to understand if we consider
the fact that for the 4 × 4 system, the argmax strategy was
able to achieve nearly perfect annealing performance, leav-
ing little space for improvement by the predictive strategy.
For the 6×6 system, the sample size is too low for the model
to make meaningful predictions and it is better to simply use
the best evaluated calibration matrix. The 5 × 5 system lies
in between the other two, where the predictive model learns
enough to dramatically outperform the argmax strategy. We

expect that with more invested QPU time, similar improve-
ments could be achieved for the 6 × 6 system as well. See
Supplementary Fig. 2 for an estimation of the learning curve
of the predictive strategy, similar to the performance curve
for the argmax strategy in Fig. 1a.

4.5 Applicability

The described approaches to quantum annealing correction
work, but have certain shortcomings. Firstly, we have
demonstrated gains in annealing performance only for
the same problem that we performed calibration on. We
expect that we could not easily use a discovered calibration
matrix on new problems. This is due to the fact that our
calibration does not address physical qubits directly, but
rather indirectly by tuning the couplings between different
chains, which have a different meaning when using a
different embedding. However, generalization might be
possible for families of physical problems that differ from
each other only in the values of nonzero elements of the
Hamiltonian and can therefore use the same embedding.
Further work is required to investigate this possibility.

The second downside of our approach is that we
must perform a number of experiments on a quantum
annealer to find a good calibration matrix. On the one
hand, we demonstrate that we can achieve significant
improvements in annealing performance even sampling
only 10–100 calibration matrices. On the other hand, this
can quickly become too demanding in terms of processing
time for use cases that require the solving of many
different problems. Furthermore, since the size of the
calibration matrix search space increases exponentially, our
quantum annealing correction methods do not scale well
to larger problems. However, we developed the approach
on a problem featuring fully connected topology, which
is the most complex type of problem to address in
quantum annealing. We expect that more sparsely connected
problems would be less demanding on quantum processor
time and would scale better to larger sizes. The described
approach to quantum annealing correction is therefore most
suitable when we are dealing with a small number of
difficult problems and the solution quality is a primary
concern.

Finally, note that the first three steps of the predictive
strategy are identical to the argmax strategy, so the dataset
constructed by sampling the dQ space can be reused for
both strategies. In fact, we recommend the use of both
strategies, because it is difficult to predict which of them
will be better for a given problem, as evidenced by our
experiments on systems of different sizes. It must also be
emphasized that the model training and inference, involved
in the predictive strategy, is performed on a classical
computer and is not computationally demanding. In our
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experiments, training even the most demanding neural
network model took only minutes on a modern CPU.

5 Insights on noise in quantum annealers

When analyzing the dataset constructed by randomly
sampling the dQ space, a few observations stand out.
Firstly, for all system sizes, nearly half of the sampled
calibration matrices result in better annealing performance
than using no calibration at all. Secondly, linear regression
is able to model the dependence of annealing performance
on dQ equally well as more complex, nonlinear methods.
The latter can be partially explained by the large amount
of random noise present in the measurements, which can
increase the risk of overfitting in models and necessitate the
use of simple, robust models. However, in such a case, one
would expect model regularization to improve the predictive
performance, which we observed only to a small degree.
Therefore, in combination with the former observation,
we are lead to the conclusion that the systematic error
landscape is much simpler than we had anticipated. When
considering the success rate, dependent upon the elements
of the dQ calibration matrix, a single global peak in the
high-dimensional space, with few or no local maxima,
would explain our observations.

To further explore the noise landscape, we perform a
new experiment on the 4 × 4 system where we perform
walks, each starting at Q0 and following a line in randomly
chosen direction. The results are depicted in Fig. 4. We
observe two distinct patterns in the measured walks: the
annealing performance either monotonically falls towards
zero, or it reaches a single maximum before falling off.
Furthermore, out of the 14 walks, 4 achieve at some point

Fig. 4 Annealing performance for walks along straight lines in random
directions in the dQ space, starting at Q0, for the 4 × 4 system.
Each color denotes a distinct random direction. Each measurement is
repeated 10 times, with the dots and full line depicting the mean and
the shaded areas depicting the standard deviation of each experiment

an annealing performance significantly better than without
calibration. Were the noise landscape rugged, we would
expect the walks to be rugged as well — experiencing many
local extrema before falling towards zero. Furthermore, we
would expect walks that improve the starting annealing
performance to be extremely rare in a 136-dimensional
space. Therefore, the presented observations are consistent
with the conclusions we reached when analyzing the dQ

dataset. The landscape of systematic error is relatively
smooth and likely features only a single maximum for
||dQ|| � ||Q0||.

This is consistent with a linear approximation of
the systematic noise already presented in the D-Wave
documentation, where each individual coupling between
physical qubits, as well as the external field on each
individual qubit, is perturbed by a small constant. Using
our calibration methods, we were able to successfully find
the appropriate compensation for the specific systematic
error present in a specific problem deployed on the D-Wave
quantum annealer.

6 Conclusions

We have demonstrated a novel approach to quantum
annealing error correction, based on compensating for
systematic noise by correcting the input to the quantum
annealer. Both the argmax and the predictive strategy
achieve significant improvements of up to 3 orders of
magnitude in annealing performance and can be put to good
use by practitioners who struggle with the effects of noise
in their quantum annealing experiments and applications.
However, our method is not well-suited to all use cases.
For example, when a large amount of solutions is required
under a time constraint or when the problem at hand is
native to the topology of the quantum computer, the method
will be unlikely to achieve improvements in annealing
performance. However, when solution quality is important
and the problem is complex or has a random topology,
our method can exhibit significant advantage and may be
customized to any problem.

Moreover, using various machine learning strategies,
we developed important insight into the nature of noise
present on the quantum computer, which can be used
in order to direct future calibration strategies that are
more efficient in the use of QPU time. One avenue
for further investigation are gradient-based optimization
methods, which are very efficient, but can easily get stuck
in local minima. Since the noise landscape appears to
be devoid of local minima, gradient-based methods might
prove a good choice. However, since the gradient is not
known analytically, it must be estimated at each step of the
optimization process by performing measurements on the
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quantum annealer. In a high-dimensional space, this might
prove expensive.

On the other hand, our observations indicate that the
interactions between the elements of dQ do not influence
annealing performance. This property can be exploited
by simplifying the problem from optimizing all the
dimensions at the same time, to optimizing each of them
independently. A strategy of sequential one-dimensional
optimization would scale with system size linearly, instead
of exponentially, and allow for scalable calibration of larger
systems.
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